The Extended 16th Hilbert Problem for Discontinuous Piecewise Linear Centers Separated by a Nonregular Line

نویسندگان

چکیده

The study of the piecewise linear differential systems goes back to Andronov, Vitt and Khaikin in 1920’s, nowadays such still continue receive attention many researchers mainly due their applications. We discontinuous formed by two centers separated a nonregular straight line. provide upper bounds for maximum number limit cycles that these can exhibit we show are reached. Hence, solve extended 16th Hilbert problem this class systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Limit Cycles in Discontinuous Piecewise Linear Differential Systems with Two Pieces Separated by a Straight Line

In this paper we study the maximum number N of limit cycles that can exhibit a planar piecewise linear differential system formed by two pieces separated by a straight line. More precisely, we prove that this maximum number satisfies 2 ≤ N ≤ 4 if one of the two linear differential systems has its equilibrium point on the straight line of discontinuity.

متن کامل

TANGENTIAL VERSION OF HILBERT 16th PROBLEM FOR THE ABEL EQUATION

Two classical problems on plane polynomial vector fields, Hilbert’s 16th problem about the maximal number of limit cycles in such a system and Poincaré’s center-focus problem about conditions for all trajectories around a critical point to be closed, can be naturally reformulated for the Abel differential equation y′ = p(x)y + q(x)y. Recently, the center conditions for the Abel equation have be...

متن کامل

The infinitesimal 16th Hilbert problem in dimension zero

We study the analogue of the infinitesimal 16th Hilbert problem in dimension zero. Lower and upper bounds for the number of the zeros of the corresponding Abelian integrals (which are algebraic functions) are found. We study the relation between the vanishing of an Abelian integral I(t) defined over Q and its arithmetic properties. Finally, we give necessary and sufficient conditions for an Abe...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Genetic Algorithm for the Transportation Problem with Discontinuous Piecewise Linear Cost Function

We investigate a transportation problem with discontinuous piecewise linear cost function in this paper. The basic feasible solution for the transportation problem, in which flow bounds on edges are uncertain, is obtained by disaggregating piecewise linear cost function. A genetic algorithm is proposed to solve the transportation problem based on the network representation of the basic feasible...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Bifurcation and Chaos

سال: 2021

ISSN: ['0218-1274', '1793-6551']

DOI: https://doi.org/10.1142/s0218127421502254